branchiopod
Our editors will review what you’ve submitted and determine whether to revise the article.
- Related Topics:
- water flea
- tadpole shrimp
- clam shrimp
- fairy shrimp
- Lipostraca
branchiopod, any of the roughly 800 species of the class Branchiopoda (subphylum Crustacea, phylum Arthropoda). They are aquatic animals that include brine shrimp, fairy shrimp, tadpole shrimp, water fleas, and other small, chiefly freshwater forms.
Branchiopods are generally regarded as primitive crustaceans. Their long fossil record dates back to the Devonian period (416 million to 359.2 million years ago). Although certain members of the group, such as fairy shrimp in the infraorder Anostraca, are mainly confined to temporary pools, the water flea, order Anomopoda, is so successful that there are few fresh waters in the world without one or more species of anomopod.
General features
Size range and diversity of structure
The smallest branchiopods are found among the anomopods, where some species are only 0.25 millimetre (0.01 inch) long. The largest living branchiopod is Branchinecta gigas, a fairy shrimp that reaches a length of 10 centimetres (3.9 inches). Some members of the fossil order Kazacharthra also grew to a length of 10 centimetres.
The class Branchiopoda is divided into 10 orders, two of which are extinct and known only through the fossil record. Branchiopods show a great diversity of form. In the Laevicaudata, for example, the number of trunk segments remains constant; there are 12 pairs of trunk limbs in the female and 10 pairs in the male. In the Spinicaudata, however, the number of paired trunk segments varies among its members from 12 up to 32 in some species. A carapace is present in the infraorders Ctenopoda and Anomopoda, but it encloses only the trunk, leaving the head free. In the infraorders Onychopoda and Haplopoda the carapace does not enclose the trunk limbs but forms a brood pouch on the dorsal surface. The anostracans (fairy shrimps and brine shrimps) lack a carapace and have stalked eyes, in contrast to the other living group, whose eyes are set into the head.
The two fossil groups as well differ markedly from each other. The order Lipostraca lacked a carapace and had 13 pairs of trunk limbs and a pair of large antennae, which appear to have been used in swimming. The order Kazacharthra had a well-developed carapace and six pairs of large thoracic limbs. The main structural feature linking these diverse forms, both living and fossil, is the flattened, or paddlelike, trunk limb, which often but not always is used in filter feeding. In the infraorders Onychopoda and Haplopoda even this feature is modified, and the trunk limbs have become specialized for grasping prey.
Distribution and abundance
Branchiopods are found worldwide in fresh waters, and only a few species live in marine environments. The anostracans, notostracans, and the suborders Laevicaudata and Spinicaudata are particularly characteristic of temporary waters, where they survive dry periods as resting eggs. The anostracan Branchinecta paludosa and the notostracan Lepidurus arcticus are regularly found in small pools of the Arctic tundra regions. These pools are temporary in the sense that they freeze solid in winter. A few species in these groups are found in permanent lakes.
The ctenopods and anomopods play an important role in fresh waters throughout the world, both in the open waters of large lakes and in the shallower plant-rich zones around the margins of ponds and lakes. Their diet consists to a large extent of algae and bacteria, and in turn they are important as food for fish. A few species of the infraorders Ctenopoda and Onychopoda are found in the sea, and the anostracan brine shrimp Artemia is often abundant in inland saline waters. The immature forms of Artemia are used as food for the young of various commercial marine fishes.
Natural history
Reproduction and life cycles
A typical branchiopod begins its life cycle as a nauplius larva, which has a simple undivided triangular body and three pairs of appendages: antennules, antennae, and mandibles. The antennae are used for swimming. As the nauplius feeds and grows, it gradually changes into the adult form—the body becomes segmented, or jointed, and additional limbs develop. In adult anostracans and notostracans the antennae lose their swimming function, but in adults of the other six orders they remain large and functional. The spinicaudate Cyclestheria lays its eggs in the space between the trunk and the carapace. These eggs develop rapidly into miniatures of the adult, skipping the larval stages. A similar mode of reproduction is found in the ctenopods, anomopods, and onychopods.
Branchiopods mature rapidly. A small cladoceran can lay eggs in the warm water of a temporary desert pool after two days. In temperate latitudes, a cladoceran may mature in less than a week during a warm summer.
The sexual arrangement in some branchiopods is that of separate males and females. Others are modified so that their eggs develop without fertilization (parthenogenesis). Some branchiopods have both male and female reproductive structures in one individual.
Among the branchiopods the anomopods show the greatest variety of reproductive habits. Under favourable conditions the eggs are laid in a brood pouch between the carapace and the trunk. There they develop rapidly and, after about two days, hatch as females, which in turn lay eggs that give rise to more females. No males are necessary for this process. When food is scarce or when there is a sudden temperature change, some of the eggs develop into males, and some of the females begin producing eggs that must be fertilized by sperm from the males. These fertilized eggs are remarkably resistant to unfavourable environmental conditions; even if frozen or dried, they will hatch when returned to favourable conditions. Many anomopods survive the winter as fertilized eggs; species that dwell in temporary pools lay such eggs to survive periods of drought. Certain Arctic or alpine anomopods, such as Daphnia middendorffiana, produce resistant eggs that do not require fertilization. The resistant, or dormant, fertilized eggs normally hatch in the following spring, giving rise to the usual miniature adult females. In Leptodora the resting egg hatches into a nauplius larva, although the rapidly developing eggs produced in the summer give rise to miniature females.
Members of the other branchiopod orders also can produce dormant, fertilized eggs. Many desert-pool species produce only resting eggs; they must abbreviate their life cycles to coincide with the brief period of favourable conditions, and their eggs must be capable of remaining dry for long periods, sometimes several years.